
1

TrickleDNS: Bootstrapping DNS Security using Social Trust
Sriram Sankararaman Jay Chen Venugopalan RamasubramanianLakshminarayanan Subramanian

Abstract—This paper presents TrickleDNS, a decentral-
ized system for proactive dissemination of DNS data. Un-
like prior solutions, which depend on the complete de-
ployment of DNSSEC standard to preserve data in-
tegrity, TrickleDNS offers an incrementally deployable solu-
tion with a probabilistic guarantee on data integrity that
becomes stronger as the adoption of DNSSEC increases.
TrickleDNS provides resilience from data corruption attacks and
denial of service attacks, including sybil attacks, using three key
steps. First, TrickleDNS organizes participating nameservers into
a well-connected peer-to-peer Secure Network of Nameservers
(SNN) using two types of trust links: (a) strongly trusted social
relationships across DNS servers (which exist today); (b) random
yet constrained weak trust links between DNS servers, which
it introduces. The SNN allows nameservers in the network
to reliably broadcast their public-keys to each other without
relying on a centralized PKI. Second, TrickleDNSreliably binds
domains to their authoritative name servers through independent
verification by multiple, randomly chosen peers within the SNN.
Finally, TrickleDNS servers proactively disseminate self-certified
versions of DNS records to provide faster performance, better
availability, and improved security.

I. I NTRODUCTION

The Domain Name System (DNS) forms a critical compo-
nent of the Internet infrastructure by providing the essential
service of host name to IP address resolution. Internet users
and providers of web-based services implicitly assume and
rely on its correct operation, constant availability, and fast
response times. However, DNS as operated today is susceptible
to a wide range of attacks that can affect the integrity of name
lookup and the availability of the DNS. Most prominently,
malicious elements can hijack domain traffic by intercepting
DNS requests and propagating bogus address mappings or
make the domain unavailable by launching DoS attacks. In
the past few years several massive DDoS attack have been
launched on the root servers and specific domains to disrupt
name resolution.

To improve DNS availability and performance, several re-
search systems have proposed replacing or augmenting the
DNS hierarchical name resolution process with a cooper-
ative, peer-to-peer approach. These proposals rely on peer
nodes as backup resolvers when the primary resolver fails
(CoDNS [16]), or employ a full-fledged peer-to-peer over-
lay (Chord [21] and Pastry [20]) for routing DNS queries
(DDNS [6], Overlook [23]), or advocate proactive dissem-
ination of DNS records to servers organized in a peer-to-
peer overlay (CoDoNS [18], Handley and Greenhalgh [9]).
Even though such decentralized systems based on proactive
dissemination can provide faster resolution of queries and

UC Berkeley, Email: srirams@cs.berkeley.edu
New York University, Email: jchen@cs.nyu.edu
Microsoft Research, Email: rama@microsoft.com
New York University, Email: lakshmi@cs.nyu.edu

resilience from failures and DoS attacks, their P2P approach
inherently entails a large trusted computing base and makes
them vulnerable to data integrity attacks. To preserve data
integrity, the above systems typically invoke DNSSEC, which
is unfortunately not supported by most domains including top-
level domains despite many years of effort.

This paper presents TrickleDNS, a hybrid system for proac-
tive dissemination of DNS records. The primary objective
of TrickleDNS is security while providing incremental de-
ployability. TrickleDNS organizes participating serversinto
a distributed overlay network similar to existing P2P DNS
systems [18], [6], and proactively pushes DNS records in a
cooperative manner. However, TrickleDNS uses a decentral-
ized security framework to protect against attacks insteadof
relying on DNSSEC or a centralized PKI. Thus leaf domains
that are currently waiting for their parent domains to deploy
DNSSEC can instead join the TrickleDNS network to securely
disseminate their data. TrickleDNS provides probabilistic se-
curity guarantees for data integrity and DoS resilience; its
guarantees become incrementally stronger when augmented by
DNSSEC and as DNSSEC’s deployment widens. TrickleDNS
achieves these properties using the following mechanisms:
Limiting Sybil Identities: TrickleDNS leverages the Sybil-
Limit protocol [25] to limit the number of sybil nodes
(O(log n) per attack edge) allowed to participate in the system.
Decentralized Key Distribution: TrickleDNS establishes a
Secure Nameserver Network(SNN) to facilitate fully decen-
tralized public key distribution. The SNN allows TrickleDNS
to distribute public keys even in the presence of a sizeable
number of compromised servers (O(n

log n
) in an n server

network).
Reliable Name Binding: TrickleDNS binds domains to their
authoritative nameservers through independent verification by
multiple, randomly-chosen servers in the network.
Proactive Dissemination of DNS Data:
Finally, TrickleDNS servers push-out DNS records signed
by their own public keys on the secure network in order to
improve lookup performance and availability.

II. BACKGROUND AND RELATED WORK

The Domain Name System (DNS) is a general-
purpose database for mapping names from a globally
unique name space to data resources associated with a
name. It uses a hierarchical name space partitioned into
non-overlapping regions calleddomains. For example,
foo.bar.comis a sub-domain ofbar.com, which in turn is a
sub-domain of the top-level domaincom, which is under the
global root domain. Resources for names within a domain
are served by a set of nodes called theauthoritative name
servers. In addition to network addresses for host names,

DNS resources, calledrecords, could also include names of
authoritative DNS servers, names of mail servers, or any
small-sized data associated with the domain.

DNS uses a delegation based architecture for name resolu-
tion [13], [14]. A DNSresolverresolves names by following a
chain of authoritative servers, starting from the root, followed
by the top-level domain name servers, down to the servers of
the queried domain. For example, the namewww.foo.bar.com
is resolved by following the authoritative severs of the parent
domainscom, bar.com, and foo.bar.com. DNS lookups could
take a long time to follow the chain of servers in the hierarchy.
To improve the lookup latency, DNS resolvers aggressively
cache responses. Clients are typically configured with one or
more resolvers from their local domain, through which they
access DNS.

Several measurement studies have identified limitations in
the performance and reliability of DNS. The multi-step, it-
erative process for query resolution adds critical latencyto
DNS lookups [10], [24], while progapagation of updates is
delayed until records are expunged after the expiry of a prede-
termined lifetime (TTL), preventing fast relocation of services
during emergencies. More criticallly, the low redundancy in
nameservers leads to limited tolerance of failures and attacks;
80% of domain names are known to be served by just two
name servers, while 32% of domain names have all name
servers behind the same network gateway [15], [18]. Finally,
the hierarchical structure make the root and top-level domains
a frequent target of denial of service attacks [4], [5].

Several researchers have proposed to augment the DNS
lookup process through alternative, complementary systems
that provide better performance and resilience.
Centralized Solutions: Deeganet al. [7] propose to serve
the entire DNS data from a single, centrally-managed reposi-
tory [7]. While centrally managed systems can provide good
performance and availability just like the DNS root servers
today, they still problematically require trust to be placed on
a single, centralized entity.
Peer-to-Peer DNS Solutions: Many proposals use the advan-
tages of a peer-to-peer system for improving failure resilience,
make query resolution faster, and proactively propagate up-
dates. For instance, CoDNS [16] is a client-driven solution
that uses a backup-set of resolvers from peer domains if
the primary resolvers from the local domain are slow or
unavailable. It uses a weak form of security based on majority
consensus provided by ConfiDNS [17] to alleviate the risk of
being misled by a malicious or compromised peer resolver.

Other peer-to-peer solutions use full-fledged overlay net-
works or Distributed Hash Tables (DHTs) for query resolution.
DDNS [6] implements legacy DNS functionalities on top of
Chord [21], while Overlook [23] is a new name service layered
on top of the Pastry [20]. CoDoNS [18] provides low latency
query resolution and update propagation through proactive,
analysis-driven caching on DHTs, complementing other ben-
efits of DHTs. These systems spread the responsibility of
serving a domain uniformly across participating servers and
efficiently transfer this responsibility to other servers during
failures. Similarly, Handley et al. [9] propose an architecture
to proactively push DNS records using a peer-to-peer overlay

text

text

text

textClient Trusted
nameserver

Nameservers belonging to
domain foo.bar

Legacy
nameserver

Fig. 1. TrickleDNS Architecture: A cloud of TrickleDNS name-
servers provide reliable DNS lookup service to clients while
interacting with legacy DNS servers in the background.

for high performance and failure resilience.
Presently, these proposals rely on DNSSEC [1], the preva-

lent security standard for DNS, to preserve data integrity.
DNSSEC:DNSSEC uses public-key cryptography to generate
certificates and verify authenticity. Each record belonging to
a domain has a certificate signed by the domain’s private key,
while its public key is disseminated through DNS as a key
record. In order to prove ownership of its name space, the
domain obtains a certificate from its parent domain, which
consists of its key record signed by the parent’s private key.
Essentially, DNSSEC associates each domain with a chain of
certificates signed by the centralized root of its parent domains.
DNS clients are seeded with the public key of the root domain
and can verify the integrity of records by following the chain
of certificates.

Unfortunately, the acceptance of DNSSEC has been remark-
ably poor. Only a few top level domains (notably.se, and
.gov until Dec 2009) support DNSSEC. Consequently, many
domains that wish to secure itself are unable to use DNSSEC
unless their parent domains adopt DNSSEC. Proposals to use
alternative centralized certification authority such as OpenSSL
(PKIs) (Fetzer et al. [8]) suffer from similar limitations.

III. T RICKLEDNS OVERVIEW

TrickleDNS is a cooperative peer-to-peer network of author-
itative name servers of participating domains. A domain can
join TrickleDNS even if its parent is not a participant. Each
participating nameserver, called atrusted nameserver(TN),
has two types of trust links with other participating TNs within
TrickleDNS. Collectively, these TNs form a distribution net-
work called theSecure Nameserver Network (SNN)(Figure 1)
The two types of trust links within the SNN form two logical
networks:
Social trust network: Two TNs that have a
pre-established “social” relationship may establish asocial
trust link between themselves through an out-of-band channel.
Social relationships between nameservers exist in the current
DNS for various reasons. (a) Nameservers belonging to the
same administrative domain have a default trust relationship.
(b) All authoritative nameservers serving a domain have a
trust relationship between them. Since, some authoritative

nameservers are often chosen from different domains for
improving failure resilience (for example,cornell.eduhas an
authoritative nameserver incs.rochester.edudomain [19]), the
resulting relationships form a more elaborate trust network,
transitively [19]. (c) Finally, nameservers of a domain have
implicit relationships with the nameservers of the parent
domain, which are trusted by default.

The above social trust network helps to prevent a large
number malicious hosts from joining the TrickleDNS SNN.
TrickleDNS applies the SybilLimit protocol on the social
network to perform admission control on the set of accepted
TNs within TrickleDNS. The SybilLimit protocol guarantees
that the number of Sybil nodes that get accepted into the
TrickleDNS network is bounded by O(log n) per attack edge
where n is the number of nodes (not including Sybil nodes)
and an attack edge is a social trust link between a compromised
node and the network of honest nodes.

Reliable communication network:Given that the social trust
network may not form a densely connected graph, TrickleDNS
builds a more densely connected network for reliable com-
munication. TrickleDNS TNs use the reliable communication
network to distribute their public keys (via multiple dis-joint
paths) and verify the authenticity of other TN’s public keys
in a completely decentralized manner. Our reliable commu-
nication protocol can tolerate up toO(n/ log n) adversarial
nodes within the reliable communication network using a
constrained-randomization technique to establish links in the
network, which we describe later.

TrickleDNS also uses this reliable communication network
to proactively disseminate useful DNS records (NS-records
and A-records) of participating domains to all servers in a se-
cure and verifiable manner. Each TN pushes the DNS records
of the domain it represents and additionally, also forwards
the records it receives from its neighbors. The records are
self-verifying and carry public-key-cryptographic signatures.
This proactive push-based protocol provides better availability,
lower query resolution times, and faster update propagation.

Name resolution in TrickleDNS:TrickleDNS supports the
same query interface as existing DNS and interacts with non-
participating nameservers through standard DNS protocols. A
client can resolve a name, sayfoo.bar, using TrickleDNS
as follows: First, a client’s DNS servers are set to point
to one or more trusted nameserver in the TrickleDNS net-
work. These may be the nameservers of the client’s local
domain itself or other open-access TrickleDNS nameservers.
A TrickleDNS namesever then handles the query forfoo.bar
in the following way: 1) If foo.bar is a participating do-
main, then the nameserver uses its locally cached NS and
glue A records for the domain’s authoritative nameservers,
queries them, and fetches a signed response records from one
of them. The TN can then verify the integrity of the returned
data since it has the domain’s public key. 2) If foo.bar is
not a participating domain, then the nameserver executes a
regular DNS recursive resolution process starting with the
authoritative nameserver of the immediate participating parent
domain.

IV. T RICKLEDNS DESIGN

In this section, we describe the details of the TrickleDNS
design.

A. Admission Control

TrickleDNS is boot-strapped with an initial set of name
servers which act as bootstrap nodes.

The authenticity of a new domain that wishes to join
TrickleDNS is validated using its social relationships with
other participating domains. In the TrickleDNS network, the
new domain’s name servers have trusted links with name
servers of the related domains. TrickleDNS then invokes the
SybilLimit protocol to validate name servers in its network.

SybilLimit is a completely decentralized protocol that en-
ables any honest node V (called the verifier) to decide whether
or not to accept another node S (called the suspect). It assumes
that the number of edges connecting the honest region (the
region containing all the honest nodes) and the sybil region
(the region containing all the sybil nodes),attack edgesis
small (even though the number of sybil nodes could be
huge) since social relationships between DNS domains require
human negotiations. While in the original SybilLimit protocol
every node acts as its own verifier, in TrickleDNS only the
bootstrap nodes are mandated to act as the verifier nodes in
the protocol and maintain consistency via majority consensus.

A node is deemed to beacceptedinto the TrickleDNS net-
work if a majority of bootstrap servers accept the node using
the SybilLimit protocol. The SybilLimit protocol guarantees
that if the honest region of the social network is fast mixing,
then any honest verifier node can discover(1 − ǫ)n honest
nodes and at most learnsO(log n) Sybil nodes per attack
edge whereǫ is a very small quantity [25]. In Section VI, we
show that the existing social trust network among DNS servers
satisfies this fast mixing property. Using this protocol, wecan
guarantee that the bootstrap nodes can admit almost all honest
nodes while admitting very few Sybil nodes. This protocol
effectively prevents large botnets from easily infiltrating the
TrickleDNS network.

B. Decentralized Key Distribution

Each Trusted Nameserver (TN)s generates a private-public
key pair (s.k, s.K) independently. We call the tuples.kid =
(s.id, s.K, s.seq) the keyed identityof s, where s.id is the
id for s and s.seq is a sequence number used to mark the
latest public key. We chose the identifier of a TN to be a
collision-resistent function of its IP address since IP address
is the unit of identification of a nameserver in DNS. We discuss
the implications of this choice for the identifier in SectionV.

The immediate goal of the key distribution process is to
ensure that each TN correctly learns the keyed identity of all
other TNs.

1) Reliable Communication Network:A reliable way to
distribute keyed identities to all TNs in the absence of a cen-
tralized certification authority is by forming a well-connected
distribution network—a network with sufficient independent
paths so that information communicated between TNs is

resilient to malicious or compromised servers. It is well known
that a network with at least2k+1 independent, vertex-disjoint
paths between each pair of TNs can tolerate up tok malicious
servers [22]. Two paths are vertex-disjoint if no intermediate
server appears on both the paths.

Prior work [22] shows that random, peer-to-peer networks,
where each server is connected to a fixed numberD of
other randomly chosen servers, provides an efficient way
of building well-connected networks. More precisely, sucha
random network of neighbor degreeD is guaranteed to have
at leastD vertex-disjoint paths between any two servers with
high probability. However, an unconstrained network, where
participating TNs have the freedom to chose any other TN
as their neighbor, has limited attack resilience. An attacker
can connect a set of colluding servers as as neighbors of a
targeted nameservers and can feed bogus data tos. To form
such a network for reliable communication, TrickleDNS con-
strains the neighbors of a TNs through the use ofconsistent
hashing[12]. One way to use consistent hashing is to have
an identifiers.id for each TNs drawn from a circular key
space. Then, the TNs can pick itsith neighbor as that TN
whose identifier is closest toh(s.id|i) clockwise on the key
space, where the operation| refers to concatenation andh
is a collision resistent hash function whose range is the same
circular key space. The neighbors ofs, thus chosen are termed
its broadcast neighbors.

Choosing broadcast neighbors through consistent
hashing enhances the attack resilience in two ways: First, an
attacker needs to compromise or introduce a large number of
servers in the system before it can control a sufficient number
of the broadcast neighbors of a targeted nameserver. Second,
any attempt by the attacker to fake a broadcast neighbor
relationship with a targeted nameserver will be discoveredby
other TNs since consistent hashing provides easily-verifiable,
deterministic neighbor relationships. A network constrained
in this manner increases the attack resilience of reliable
communication from a constant numberk of malicious
servers, shown in [22] to a sizeable fraction of the total
network (O(n/ log n)).

Theorem 1:Reliable communication can be achieved with
high probability between any pair of non-malicious name-
servers in the presence ofO(n

log n
) malicious servers provided

the number of broadcast neighborsD ≥ α log n for some
α > 6 ln 2 ∼ 4.15 and the paths used for reliable communi-
cation are of length at mostlog n.

A proof is presented in the appendix. In other words, if
every TN has a minimum number of broadcast neighbors, the
SNN will contain sufficient number of short vertex-disjoint
paths between every pair of TNs such that a majority of these
paths do not have any adversarial nodes with high probability.

2) Key Distribution and Verification:Once the reliable
communications network is setup, key distribution followsthe
same protocol described in [22]. We give a brief overview of
this protocol for completeness.
State: Each TN s stores anidentity graphGs with distinct
keyed identities it learns and the neighbor relationships be-
tween them. Note that there could be more than one keyed
identity for the same server either because the server generated

a new public key with a higher sequence number or because
a malicious server created a fake keyed identity for it. The
identity graph enabless to verify the authenticity of a keyed
identity t.kid by checking whether there are at least⌈B

2 ⌉
vertex-disjoint paths betweens and t in Gs. If two keyed
identities for the same servert pass this check, thens accepts
the keyed identity with the greater sequence number. One way
to perform the disjoint-path check is by running a standard
Max-Flow algorithm.
Protocol: TNs exchange their keyed identity through the
broadcast ofsigned path vectormessages to their broad-
cast neighbors. A TNs sends a signed path vector (SPV)
spv[(s.id, s.K, s.seq), s.bi.id]s.k to its broadcast neighbor
s.bi. The SPV contains the keyed identity of the sending TN
and the identity of the receiving broadcast neighbor; the whole
path is signed using the TNs’s private key. Any other TN can
verify that the SPV has not been corrupted using the embedded
public key.

The receiving serverr = s.bi then extends the SPV
by adding its own keyed identity and the keyed identity
of the broadcast neighbor to which the SPV will be for-
warded, signs the extended SPVspv[spv[(s.id, s.K, s.seq),
s.bi.id]s.k, (r.id, r.K, r.seq), r.bj .id]r.k with its private key,
and propagates it. We denote an SPV that traverses servers
s1, . . . , sn asSPV = spv[(s1, . . . , sn)].

A receiving TN r rejects an SPV under three conditions:
First, the SPV has bogus link relationships; that is, the
link relationships do not obey the consistent-hashing-based
neighbor selection rules. Second, the SPV contains no new
link information about keyed identities. And, finally, the SPV
does not verify itself; that is, some signature in the SPV does
not match the corresponding public key. If the SPV passes
these checks, it is scheduled to be further propagated to the
broadcast neighbors.
Overhead Analysis: We can analyze the message overhead
of the Reliable Key Broadcast in the steady state where all
TNs have learned a stable topology and a new TN joins the
system. The new TNs createsB new neighbor relationships.
Since a TN does not forward an SPV if it does not contain
any new neighbor relationships, each TN forwards at most one
SPV for each new neighbor ofs to each of its neighbors. As
a result, a TN must performO(B2) verifications and transmit
O(B) SPVs for each new TN joining the system.

The overhead may be higher if several TNs join the system
simultaneously, but we expect large simultaneous joins to be
rare in practice. More seriously, a malicious server could in-
duce the exchange and verification of a large number of SPVs
by creating fake server identities and neighbor relationships
leading to a DoS attack on the system. Rate limiting on
the number of SPVs accepted by a TN from each neighbor
eliminates this risk of a DoS attack.

C. SNN Maintenance

This section details how TrickleDNS accepts new TNs into
the system, handles failure and leaving of existing TNs, and
revocation or replacement of public keys.
Join: A new nameservers uses the TrickleDNS join protocol
where the bootstrap nodes have to approve every new node us-

ing majority consensus after running the SybilLimit protocol.
Once admitted, the node obtains the set of reliable dissemina-
tion links by contacting a few existing TNs calledbootstrap
servers. The bootstrap servers return tos their current identity
graphs.s constructs its identity graphGs by applying majority
consensus; that is, it accepts a keyed identity if a majorityof
the bootstrap servers know about that keyed identity.s then
identifies its broadcast neighbors from the list of TN identities
it has and initiates the broadcast of its keyed identity.
Failures and Departures: TrickleDNS employs a
heart-beat protocol to detect failures. Each TNs periodically
broadcasts a signedkeep aliveincluding its keyed identity.
A TN removes a keyed identity from its identity graph if it
fails to receive a few consecutivekeep alivesfor that keyed
identity.
Key Renewal: Finally, a TN might want to revoke its current
public key and start using a new pair of private-public keys.
Key revocation and renewal in TrickleDNS is trivial and
happens when the TN initiates a SPV broadcast with a new
keyed identity with the new public key and a higher sequence
number.

Note that the above processes of joins, failures, and key
renewals might create temporary inconsistencies in the identity
graph; few keyed identities might represent departed or failed
nodes or older keys while new keys and node identities
may not have been included yet. We intend to tolerate these
inconsistencies simply as part of the path disjointedness check
where they may cause false positives. A slight increase in
the neighbor degree, and thereby the network connectivity,is
sufficient to alleviate the effect of false positives.

D. Reliable Name Binding

The purpose of Reliable Name Binding is to tightly couple
TrickleDNS with the current DNS. The end-goal of Trick-
leDNS is to be a safety net for the existing DNS as opposed
to setting up a completely new namespace. Hence, if a TNs
within TrickleDNS claims to be the authoritative nameserver
for the domainfoo.bar, then the property we require from
reliable name binding is that: an external client doing a name-
lookup through TrickleDNS forfoo.bar should be redirected
to s only if s’s claim is genuine.

Each participating domainD chooses a private-public key
pair (D.k, D.K) independently and creates adomain keyed
identity D.kid = (D.name, D.K, D.seq) for itself. A partic-
ipating authoritative nameservers of the domain then broad-
casts the domain keyed identity on the SNN by signing it with
its private key. For its message to be accepted, the TN needs
to prove to the system that it is indeed one of the authoritative
nameservers of the domain.

TrickleDNS generated thisproof of authority through in-
dependent verification by randomly chosen peer TNs called
certifying servers. Each TNs belonging to domainD connects
to C certifying servers in a similar manner as it chooses
its broadcast servers, that is, constrained random selection
through consistent hashing. Theith certifying server ofs is
that server whose identifier is closest to SHA-1(s.ip0...b−1|i)
clockwise on the consistent-hashing key space.

Note that the different authoritative nameservers of a domain
will be mapped to the same certifying servers if their IP
addresses are from the same block. This reduces the verifica-
tion load on the certifying servers, especially when malicious
servers request verifications for false claims. Moreover, mali-
cious adversaries only owning a small number of IP address
blocks cannot launch DoS attacks by requesting authority
certificates.

A certifying serverc checks whether a TNs is authoritative
for a domainD using the DNS hierarchy or TrickleDNS itself
if the parent domain is part of TrickleDNS.c perfoms the
check as follows: 1) ifc reliably knows the public key of
the parent domain already it looks for a cached NS records
and glue A records signed by the parent indicating thats
is authoritative forD. 2) otherwise,c performs a complete
DNS lookup identifying the parent domain’s nameservers and
fetching the NS and glue A records from them. It then
checks that a majority of the parent domain’s nameservers
acknowledge thats is authoritative for the claimed domain.1.

The ith certifying serverci for a TN s provides a signed
authority certificatecert[ci.id, s.id, D.id, expiry time]ci.k to
s attesting its authority over the domainD, whichs broadcasts
on the SNN. Any server can verify the certificates using the
public key of the certifying server. A server accepts thats
is authoritative forD if it has at least⌈C

2 ⌉ valid authority
certificates.

In order to overcome the certification mechanism, an ad-
versary needs to compromise a majority certifying servers of
a domain. Similar to key distribution, randomization makesit
difficult to succeed as shown in the following theorem:

Theorem 2:Every non-malicious nameserver can be reli-
ably bound to its domain with high probability in the presence
of f ∗ n malicious servers, wheref is an upper bound on the
fraction of adversarial servers in ann-servers system, provided
C ≥ β log n, whereβ = 16(1−f)

(1−2f)2
ln 2.

A proof of this theorem is presented in the appendix.
An authority certificates may need to be revoked since a
nameserver currently authoritative for a domain may not be
authoritative forever. The certificates have anexpiry timeafter
which it is not accepted. We expect a certificate’s lifetime
to be of the order of days so that the certificate generation
and propagation overhead is low and loose-synchronizationof
clock across servers is sufficient to enforce certificate expiry.
However, TrickleDNS permits a certifying server to explic-
itly revoke a certificate by broadcasting a signedrevocation
revoke[ci.id, s.id, D.id, expiry time]ci.k

throughout the system if required.
In the described certification process, trust is placed on the

current DNS hierarchy. While this is a compromise as DNS
is not secure in the first place, we believe it is practical for
three reasons. First, it reduces the large trusted computing
base (TCB) involved in peer-to-peer DNS alternatives to the
much smaller TCB along the DNS hierarchy. Second, higher-
level, parent domains typically tend to have better redundancy

1Looking for agreement might generate false positives because sometimes
DNS servers respond with different set of records dependingon the location
of the server or the client. However, this is not a serious problem for NS
records which are seldom generated dynamically.

than low-level domains as we show in Section VI. Finally, in
the absence of DNSSEC or an alternative central certification
authority, an approach based on independent verification and
consensus provides some resilience against compromises in
current DNS.

E. Pushing DNS Records

The reliable distribution of domain and server keys facili-
tates the rest of data dissemination in TrickleDNS. Authorita-
tive nameservers of a domainD broadcast DNS records signed
by the domain key followed by their individual server keys.

TrickleDNS proactively propagates only a certain set of
critical records that include the delegation or NS records
used to identify the authoritative namservers of a domain, the
corresponding glue (A) records that provide the IP address of
the nameservers, and the start of authority or SOA records.
Consequently, a TN typically needs to perform a single
lookup to resolve a DNS query for a participating domain
(a domain redirection through a CNAME response, however,
might require additional lookups). We could avoid this lookup
by proactively disseminating every record associated witha
domain, but this considerably increases the bandwidth over-
head on the TNs diminishing their incentive to participate.
Alternatively, we could enable proactive dissemination for
popular records (mail servers, web servers, etc.). Doing so
requires additional mechanisms to ensure that participating
domains do not overload the system.

DNS records propagated on TrickleDNS are not stored
forever at each server, but only as long as thetime-to-live
on the DNS record indicates. This ensures that bindings that
are no-longer invalid (for example, an expired sub-domain)or
that are signed by old keys are expunged from the system.
However, if a domain changes a record (for instance, the IP
address of a nameserver), it can still proactively broadcast the
new record and thereby avoid the long update propagation
delay of current DNS.

Finally, dynamically generated DNS records (for example,
DHCP addresses) require the private key to be stored in mem-
ory to sign records online posing a risk of key compromise.
This problem can be mitigated by isolating the signing process
and running it on a node that is protected within a firewall,
only communicates on restricted ports, and does not also run
the name server.

V. SECURITY OF TRICKLEDNS

In this section we provide a top-down summary of the
security properties of TrickleDNS and briefly discuss their
implications.

A fully-decentralized, peer-to-peer solution to DNS such as
TrickleDNS faces at least two types of attacks from malicious
adversaries:
1. Server Compromises:An adversary might take advantage
of a software vulnerability and compromise one or more
participating nameservers. While TrickleDNS cannot eliminate
software vulnerabilities or prevent compromises, it makes
a successful domain hijack from compromised TrickleDNS
servers incredibly difficult. In order to successfully hijack a

domain, the adversary either needs to compromise a majority
of the certification servers, called acertification attack, or a
sufficient number of servers in the paths between the domain’s
authoritative nameservers and other TNs, called apath attack.

TrickleDNS achieves this high resilience against certifi-
cation and path attacks through randomization, that is, dis-
tributing the vulnerable servers uniformly in the overlay.The
success of certification attack depends on the probability
of finding a majority vulnerable servers among certification
servers, a value that can be made very low by increasingC as
required. Similarly, the probability of success of a path attack
can be made as low as desired by increasing the neighbor
degreeB as required.

Of course, an adversary can also hijack a domain by
compromising one or more of its parent domain nameservers
(parental attack). If some of the parent domains are part of
TrickleDNS, then the above security analysis also applies to
them as well. Otherwise, this dependence of current DNS
hierarchy is an unavoidable risk inherent in the DNS protocol.
2. Identity Attacks: An adversary could increase its chances
of succeeding in a path attack or certification attack by artifi-
cially increasing the number of malicious servers in the system
or breaking randomization by controlling the identity of the
server. A rich and powerful adversary might be able to launch
an attack using a large network of compromised hosts called a
Botnet. TrickleDNS limits the number of compromised hosts
that can enter the system by leveraging SybilLimit and the
social trust links that already exist implicitly in the DNS.

TrickleDNS is secure against infiltration by Botnets due to
a combination of two factors. First, by using the SybilLimit
protocol on the social network, TrickleDNS can guarantee that
the total number of Sybil identities is bounded bylog n identi-
ties per attack edge in the social network. Second, the reliable
communication protocol for disseminating public keys is re-
silient in the face of uptoO(n/ log n) adversarial nodes. Ifγ is
the number of attack edges that an attacker owns in the social
network, then the number of Sybil identities in TrickleDNS is
bounded byγ log n << n/ logn. In practice,γ is a constant
since it is indicative of the number of real authoritative name
servers compromised by a botnet. In smaller networks, the
probabilistic security guarantee can be strengthened at the cost
of increased communication, by increasing the degreed of
the number reliable communication links of each node. To
achieve perfect reliable communication without relying onany
randomness, we required ≥ 2γ log n + 1 which is feasible in
small networks.

Another, more subtle way to launch an identity attack is to
attack the IP layer by a) spoofing IP addresses, b) IP hijacking,
or c) man-in-the-middle attacks. TrickleDNS is immune to IP
spoofing because it performs two-way communication using
TCP. IP hijacking by compromising Internet routing, however,
could be dangerous; if the hijack is partial it is likely to have
less impact as TrickleDNS connects each server to several
others randomly distributed in the Internet. On the other hand,
a complete hijack can be treated as a compromised IP address
or IP address block; the above analysis for server compromises
holds for IP hijacks as well. Man-in-the-middle attacks have
a similar impact as hijacked IP addresses and can be treated

as a server compromise.
Finally, we expect that a participating domain interested in

its own security will take the necessary measures (ie. apply
patches) to secure its own nameservers. TrickleDNS does not
protect a domain from compromises to its own nameservers.
Its goal instead is to protect a participating domain from
vulnerabilities in other, less-secure domains.

VI. EVALUATION

In this section, we evaluate the security properties and the
performance of TrickleDNS.

A. Security Analysis

While the theoretical results in Section III showed that
TrickleDNS can handleO(n/ log n) adversarial servers, this
bound is asymptotic and may not completely reveal the
effectiveness of TrickleDNS in real-world settings. In this
section, we evaluate the resilience of TrickleDNS to the path,
certification, parental, and Sybil attacks defined above through
simulations.

We simulated random topologies to represent TrickleDNS
networks. To generate a topology ofn servers, we assigned
a random IP address to each node and connected it toB =
log n other nodes according to the rules of Section III. To
analyze security attacks, we modeled a global adversary that
controls a random fractionf of servers uniformly distributed
in the topology. These servers are assumed to collude to cause
maximum damage to the system.

1) Resilience from Path Attacks:First, we evaluate the
resilience of TrickleDNS from path attacks. Recall that for
a correct dissemination of a key from a source node to a
destination node, at least a majority of vertex-disjoint paths
between the pair of nodes should be void of compromised
servers. We define agood path in the generated topology
as a path from the source to the destination passing only
through non-compromised nodes. For reliable communication,
the number of good paths must be at least⌈ 1

2 log n⌉ since the
neighbor degree is2 log n. We call such a pair of servers a
reliably-communicating pair.

Figure 2 shows the CDF of the number of good paths
between node pairs for a system withn = 65536 servers
of which f = 5% are compromised and controlled by an
adversary. For this scenario, each nodes has16 neighbors and
an expected16 disjoint paths with every other node. Thus
any pair of nodes with9 or more disjoint paths is a reliably
communicating pair.

In Figure 2, at least99% of node pairs are able to com-
municate reliably. This may appear to be not high enough,
but note that we are looking at a worst case scenario of5%
of malicious nodes all colluding together. In practice, we’d
expect much fewer compromises at any given time and even if
there are many compromised servers for them not to all collude
together. Moreover, we can easily increase the neighbor degree
if required to handle a greater number of compromised servers.

Figure 3 shows the tolerance to path attacks for different
values of malicious fractionf and network sizen. These
numbers are an average of10 runs. We observe a high

extend of reliable communication happens for all network sizes
shown. However, as expected, there is a critical point off
beyond which the fraction of reliably communicating pairs
drastically drops.

2) Resilience from Certification Attacks:Next we evaluate
the resilience of TrickleDNS to certification attacks. Figure 4
shows the CDF of the fraction of non-malicious servers in
the certifying server set of a TN. Here, we set the number
of certifying servers for each domain to belog n and the
number of servers in the system to ben = 65536. Recall
that a TN succumbs to a certification attack if a majority
of certification servers are compromised. Figure 4 shows that
even in the presence off = 5% compromised servers in the
system, the probability of a genuine server succumbing to the
attack is very small (less than10−5). Even at an unreasonably
high fraction of 20% compromised servers, only about 1% of
genuine servers succumb to the attack.

3) Resilience from Parental Attacks:To understand the
impact of attacks to legacy DNS servers on TrickleDNS, we
analysed a snapshost of inter-domain parent-child relationships
in DNS as it existed on July 22, 2004. This snapshot was
generated from a study done at Cornell University [19] and
contains166, 771 distinct name servers that contribute towards
resolution of597, 196 distinct domains.

Figure 5 shows the CDF of the number of attacks against
the authoritative nameservers of the parent domain that the
majority-consensus approach can tolerate. In general, it is
⌊a−1

2 ⌋ for compromises anda − 1 for DoS attacks, wherea
is the number of distinct authoritative nameservers involved.
The key observation from Figure 5 is that close to 90% of
the domains able to tolerate at least6 compromises in its
parent’s nameservers. This is surprising because, in general,
more than 80% of domains have only two nameservers [15],
[18]. The surprisingly good resilience to attacks at parents
comes from the DNS hierarchy being flat and a large number
of domains (even though not secure on their own) fall directly
under the more secure top-level domains. The sharp increase
in parental resilience at6 corresponds to the large number
of .com domains that are served by the thirteen.com name
servers.2 Finally, Figure 5 also shows that the resistance to
DoS attacks for parent domains is good.

4) Resilience from Sybil Attacks:For the purposes of evalu-
ating the effectiveness of using the SybilLimit protocol onthe
DNS topology, we constructed a graph of DNS nameserver
“trust” relationships and measure expander graph properties
of this graph. We show that the number of new neighbors
discovered via vertex expansion increases exponentially and
therefore the graph is fast-mixing, implying that the SybilLimit
protocol guarantees will apply.

To construct the DNS trust graph, we used the same DNS
relationships dataset obtained from Cornell [19] we used previ-
ously. We represent the nameservers as vertices and undirected
edges as the trust relationships between all authoritativename-
servers of a domain. To this, we also add edges representing
parent-child dependencies, that is, all nameservers belonging

2In reality, there are more than thirteen.comnameservers behind the thirteen
published IP addresses. In this analysis, we just count parents by the number
of distinct NS records returned.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18

C
D

F

Number of good paths

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
of

 r
el

ia
bl

y-
co

m
m

un
ic

at
in

g
pa

irs

Fraction of malicious servers

Size=256
Size=4096

Size=16384
Size=65536

Fig. 2. CDF of good paths for 65536 servers and malicious
fraction = 5 %

Fig. 3. Reliably communicating pairs for different values of
system sizes and malicious fractions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of non-malicious servers

Malicious=0.05
Malicious=0.2
Malicious=0.4

0%

20%

40%

60%

80%

100%

012345678910

number of attacks tolerated

C
D
F
 (
%
)

Node Compromises

Denial of Service

Fig. 4. CDF of the fraction of non-malicious servers in the
certifying server set.

Fig. 5. CDF of the number of node compromises and DoS
attacks that can be tolerated by existing domains.

to domain foo.bar.edu have edges to all authoritative name
servers ofbar.edu.

We found that the above graph including the parent-child
trust links was nearly completely connected — 166,758 servers
out of 166,772 (the disconnected server names may simply be
artifacts of the crawling methodology). Without includingthe
parent-child trust links, the graph was extremely disconnected
with 70588 components.

We perform a vertex expansion by running a breadth first
search (BFS) from the server nodes of a randomly selected
domain in our trust graph and count the number of unique
neighbors at each iteration. Figure 6 shows the min/max/avg
number of new neighbors discovered per hop from 1000
randomly selected seed domains. We can see that the diameter
of the trust graph is only 12 hops with the trust links from
the DNS hierarchy indicating a high degree of connectedness
in the graph which is the property that we want to show. In
contrast, without the DNS hierarchy edges the graph diameter
is of the subcomponent selected reaches 32 hops. We conclude
that SybilLimit would maintain its guarantees for the author-
itative nameserver trust topology if the DNS heirarchy’s trust
relationships were included in the graph.
Summary The analysis in this section tells us that i) the
reliable communication mechanism and the certification mech-
anism can tolerate a significant malicious presence, ii) that us-
ing the parental nameservers to verify the authority of a name-
server before it joins TrickleDNS is a reasonable approach,and

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20

T
ru

st
 S

ub
gr

ap
h

S
iz

e

Hop Count

w/DNS Hierarchy (avg)
w/DNS Hierarchy (min/max)
w/out DNS Hierarchy (avg)

w/out DNS Hierarchy (min/max)

Fig. 6. Neighbors per hop in DNS trust network

iii) existing trust relationships between domains can be lever-
aged on to mitigate Sybil attacks. These properties have been
achieved withlog n broadcast and certifying servers. These
system parameters can be increased by a constant factor with
little added overhead so that the path and certification re-
silience can be improved. Similarly, resilience to Sybil attacks
can be improved by encouraging domains to form more trusted
links. On the other hand, the parental resilience is not easyto
improve without having the parental domain actually join the
TrickleDNS network.

B. Performance Analysis

In this section, we describe experiments to measure the
performance of TrickleDNS and compare it with legacy DNS.

Here, we are interested in quantifying the following three
metrics: 1) lookup latency of DNS queries in TrickleDNS, 2)
time taken to push DNS records between name servers, and
3) memory and bandwidth overhead of pushing DNS records.

For benchmarking performance, we implemented the TN
functionality based on the djbdns [3] codebase. The mech-
anisms for reliable communication described in Section III
are implemented as a reliable communication toolkit and
exported to the TrickleDNS implementation codebase. Our
evaluation used1024-bit RSA keys for authentication. The TN
implementation is layered on top of the toolkit. Each TN acts
as a caching DNS nameserver that can support the operations
and optimizations present in current DNS.

We deployed our implementation of the TN on the62-
node PSI cluster [2]. To compare the lookup performance of
TrickleDNS with legacy DNS, each TN acts as an authoritative
nameserver. Queries are sent to a randomly chosen TN. The
TN tries to answer the query from its cache; otherwise it
queries legacy DNS and reflects the response record. When-
ever a TN gets a new record, it pushes it to the other servers.
This gives us an estimate of the overhead of pushing DNS
records. Queries are generated from a portion of the real
workload collected by Junget al. [11] at MIT with 281,943
total queries to 47,320 distinct domains.

In our testbed, we executed60 TN instances on different
nodes with each instance having an average degree of6.
Each TN instance reliably discovered the other instances in
the network and then pushes nameserver records to the these
instances.

1) Lookup Characteristics:We first compare the lookup
latencies in TrickleDNS and the legacy DNS. From the dis-
cussion on the lookup process in Section III, we notice that
the time to perform a lookup is dependent on whether the
client’s local DNS server is part of the TrickleDNS. Given
a target domainD, if the local DNS server is part of the
TrickleDNS, it can respond to a query with the NS and glue
records of an authoritative name server ofD. Otherwise, the
local server reflects the query to a TN. To enhance security,
the local server may simultaneously queries different TNs and
wait for a majority consensus.

The first experiment deals with the scenario where the
local DNS server is a TN. In this case, Figure 7 shows the
distribution of query latency for TrickleDNS and legacy DNS.
Only queries which were not answered from the local cache
were included in the measurement. We measure the latencies
of those queries for which the TNs are already populated with
the target records. Otherwise, the query latency would include
the latency of fetching the record via legacy DNS. The Figure
shows that the median latency of TrickleDNS is a factor of 10
lower than legacy DNS. Note that the latencies shown in both
cases are simply the latencies for fetching the authoritative NA
and glue A record. The DNS clients then have to contact the
authoritative server for the target A record which will incur
an additional delay irrespective of whether legacy DNS or
TrickleDNS is used.

In the second experiment, we consider the case in which
the client’s local DNS server is not part of TrickleDNS. The
local server then reflects the query to a set of TNs and takes

a majority vote on their responses. In our experiments, the
resolver contacts 3 TNs for redundancy. The latencies for this
experiment is shown in Figure 8.

We consider three scenarios corresponding to no node in the
network being malicious, and1 and5 nodes being malicious
respectively. A malicious node when contacted simply allows
the query to time out. The first observation is that, in the
median case, queries take almost the same time as the case
where only one node is contacted. Further, the addition of a
single malicious node does not affect the latencies becausethe
servers are chosen uniformly at random for each query. With
5 malicious nodes, the median latency only increases by about
8%. With a larger network size, a single malicious node will
have a smaller influence on the query latency.

To summarize, for domains that are part of TrickleDNS,
queries are answered much faster than legacy DNS both in
the cases where the local DNS server is a TN and when it
is not (and must send out redundant queries). Although our
evaluation tries to simulate the effect of queries in a real
TrickleDNS deployment without doing any form of namespace
partitioning, the real-world performance of such a system
would depend on the regions of push-pull, the nature of the
resolver, and the latency in fetching the final A record.

2) Overhead of Pushing DNS records:Proactive dissem-
ination of keys and DNS records in TrickleDNS does incur
additional overhead. Within our experimental setup, we com-
puted two quantities: (a) the time incurred by a new TN to
reliably broadcast its key when it joins the network; (b) the
time incurred by a new TN to propagate a DNS record in
a secure manner. As expected, we found out that the update
time for reliable broadcast keys was much higher than the time
to broadcast DNS records. The90th percentile of these two
quantities were4.5s and180 ms respectively. While reliable
broadcast of keys is relatively expensive due to the need for
path-vector signature computation and verification operations,
this operation is relatively infrequent (on the order of days)
since the underlying topology is not very dynamic. Once
key distribution within the SNN is accomplished, subsequent
propagation and verification of DNS records incurs very low
overhead.

Based on our experiments, we found out that the system pro-
files for the TN instances indicate that TrickleDNS incurs low
bandwidth and memory overhead. The bandwidth exchanged
between TNs is 1.35 KBps of which only 12% of the bytes are
used in reliable communication. This represents a very small
bandwidth overhead. The net memory usage of each TN was
roughly 9.356 MB of memory at the end of the trace with 6804
records being stored. The state maintained and propagated per
domain by our implementation is less than10 KB. In addition,
our implementation can verify the validity of roughly40, 000
signatures every second.

Recent work by Handleyet al. [9] shows that roughly
0.5% of domains change name servers and about0.1% of
domains expire every day. Extrapolating to the entire DNS,
they claim that roughly420, 000 domains change nameservers
and100, 000 domains expire everyday. For the entire DNS this
translates to an update rate of1.6 Kbps [9], a rate that can
very easily be handled by our system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 1 10 100 1000 10000 100000

C
D

F

Time(ms)

Legacy DNS
TrickleDNS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 1 10 100 1000 10000 100000

C
D

F

Time(ms)

TrickleDNS with query verification
Our system with 1 malicious node
Our system with 5 malicious node

Fig. 7. CDF of query latency for the case of a client directly
contacting an TNs compared with the legacy DNS latency.

Fig. 8. CDF of query latency for the case where the local
DNS server that is not an TN.

In summary, the overhead of pushing name server records is
reasonably small in terms of the amount of state maintained,
bandwidth requirements, memory requirement and processing
overhead.

VII. C ONCLUSIONS

This paper presented TrickleDNS, a peer-to-peer proactive
dissemination system for DNS. TrickleDNS is a safety net
for DNS and is meant to act as a stopgap to secure DNS until
DNSSEC is eventually fully adopted. The primary contribution
of TrickleDNS is to be secure against malicious attacks
that may attempt to corrupt or hijack DNS records. To this
end, TrickleDNS builds a robust overlay network that can
tolerate commonly-encountered attacks, while providing low
lookup latency, fast update propagation, and improved failure
resilience.

REFERENCES

[1] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol
Modifications for the Domain Name System Security Extensions. RFC
4035, March 2005.

[2] Berkeley Millennium Cluster. http://www.millennium.berkeley.edu/PSI/
index.html.

[3] D. Bernstein. djbdns. http://cr.yp.to/djbdns/notes.html.
[4] N. Brownlee, kc claffy, and E. Nemeth. DNS Measurements at a Root

Server. InProc. of IEEE GlobeCom, San Antonio, TX, November 2001.
[5] N. Brownlee, kc Claffy, and E. Nemeth. DNS Root/gTLD Performance

Measurements. InProc. of Usenix Systems Administration Conference,
San Diego, CA, December 2001.

[6] R. Cox, A. Mutitacharoen, and R. Morris. Serving DNS using a Peer-
to-Peer Lookup Service. InProc. of IPTPS, Cambridge, MA, March
2002.

[7] T. Deegan, J. Crowcroft, and A. Warfield. The main name system: an
exercise in centralized computing.SIGCOMM Comput. Commun. Rev.,
35(5):5–14, 2005.

[8] C. Fetzer, G. Pfeifer, and T. Jim. Enhancing dns securityusing the ssl
trust infrastructure. InProceeding of the IEEE WORDS 2005, 2005.

[9] M. Handley and A. Greenhalgh. The Case for Pushing DNS. InProc.
of HotNets, November 2005.

[10] C. Huitema and S. Weerahandi. Internet measurements: The rising tide
and the DNS Snag. InProc. of ITC Specialist Seminar on Internet
Traffic Measurement and Modeling, Monterey, CA, September 2000.

[11] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. Dns performance and
the effectiveness of caching. InIMW ’01: Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement, pages 153–167, New
York, NY, USA, 2001. ACM Press.

[12] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igraphy. Consistent Hashing and Random Trees: DistributedCaching
Protocols for Relieving Hot Spots on the World Wide Web. InProc. of
ACM Symposium on Theory of Computing, El Paso, TX, April 1997.

[13] P. Mockapetris. Domain Names: Concepts and Facilities. Request for
Comments 1034, November 1987.

[14] P. Mockapetris. Domain Names: Implementation and Specification.
Request for Comments 1035, November 1987.

[15] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang. Impact of
Configuration Errors on DNS Robustness. InProc. of ACM SIGCOMM,
Portland, OR, August 2004.

[16] K. Park, V. Pai, and L. Peterson. CoDNS: Improving DNS Performance
and Reliability via Cooperative Lookups. InProc. of Symposium on
Operating Systems Design and Implementation, San Francisco, CA,
December 2004.

[17] L. Poole and V. S. Pai. ConfiDNS: Leveraging scale and history to
improve DNS security. InProceedings of WORLDS 2006, Seattle, WA,
Nov 2006.

[18] V. Ramasubramanian and E. G. Sirer. The Design and Implementation
of a Next Generation Name Service for the Internet. InProc. of ACM
SIGCOMM, Portland, OR, August 2004.

[19] V. Ramasubramanian and E. G. Sirer. Perils of Transitive Trust in the
Domain Name System. InProc. of ACM IMC, Berkeley, CA, October
2005.

[20] A. Rowstorn and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-scale Peer-to-Peer Systems. In Proc. of
IFIP/ACM International Conference on Distributed SystemsPlatforms,
Heidelberg, Germany, November 2001.

[21] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for InternetApplica-
tions. In Proc. of ACM SIGCOMM, San Diego, CA, August 2001.

[22] L. Subramanian. Decentralized security mechanisms for routing proto-
cols. Ph.D. thesis, University of California, Berkeley.

[23] M. Theimer and M. B. Jones. Overlook: Scalable name service on an
overlay network. InICDCS ’02, page 52, Washington, DC, USA, 2002.
IEEE Computer Society.

[24] C. E. Wills and H. Shang. The Contribution of DNS Lookup Costs to
Web Object Retrieval. Technical Report TR-00-12, Worcester Polytech-
nic Institute, July 2000.

[25] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit:A near-optimal
social network defense against sybil attacks. InIEEE Symposium on
Security and Privacy, 2008. SP 2008, pages 3–17, 2008.

APPENDIX

A. Proof of Theorem 1
Proof: Let h denote te maximum hop-length of the set of paths

used for establishing reliable communication between any pair of
nodes. The reliable communication network we have constructed has
a diameter oflog n. Given the symmetry in the connectivity pattern,
one can construct a set ofD disjoint paths between any pair of
nodes which have comparable length. In a DHT construction, one

can constructD paths of exactly the same path length oflog n. In
the randomized case, the maximum hop length across these is roughly
log n + c for some constantc with high probability. Given this, we
show that one can achieve reliable communication inG with high
probability in the presence ofO(n/h) malicious nodes.

Consider any set ofd identity-disjoint paths between two good
nodess and t. Random variableX =

Pd

i=1 Xi, whereXi is 0 if
there is a bad node on the path and1 otherwise, denotes the number
of good paths betweens and t. Let Y denote the number of bogus
paths faked by malicious nodes tos. By the constraints imposed by
the path-vector signatures and the topology verification, this requires
each malicious nodes′ that produces a paths, s1, . . . , sk, s′ to have
other malicious nodes present ats1, . . . , sk. For each identity-disjoint
bad path, there must be as many malicious nodes being fingered
by s. Denoting these nodes byZ, i.e., Z =

Pd

i=1 Zi whereZi is
1 if the ith neighbor ofs is malicious and0 otherwise, we have
Y ≤ Z. BoundingPr[X < Y] is done by boundingPr[X < Z]
sincePr[X < Y] < Pr[X < Z].

Writing W = X −Z =
Pd

i=1(Xi −Zi), Pr[X < Z] is rewritten
as Pr[W < 0]. For a set of identity-disjoint paths, theXi’s are
independent provided each node chooses its neighbors uniformly at
random from the set of all nodes. Denoting the fraction of badnodes
by f . E(Zi) = (1 − f)hi−1 wherehi > 1 is the hop-length of path
i. TheZi’s are similarly independent withE(Zi) = f . We have

E(W) =
d

X

i=1

(E(Xi) − E(Zi))

=
d

X

i=1

(1 − f)hi−1
− df

≥

d
X

i=1

(1 − f)(hi − 1) − df

≥ d(1 − hf)

Hereh is the maximum hop-length of any path. RequiringE(W) > 0
gives us the conditionfh < 1. We use Hoeffding’s inequality for the
sum of variables(Xi − Zi) bounded between[−1, 1].

Pr[W < 0] = Pr[W − E(W) < −E(W)]

< e−
E(W)2

2d

< e−
d(1−fh)2

2

<
1

n3

by requiring d(1−fh)2

2
> 3 ln n. Settingd = α log n, and using the

fact thatfh < 1, we getfh < 1 −

q

6
α

. Thus the fraction of bad
nodes that can be tolerated isO(n

h
) for sufficiently largeα. Given

h = O(log n), the protocol can handleO(n/ log n) malicious nodes.

B. Proof of Theorem 2
Proof: Since the certifying nodes are chosen independently and

uniformly at random from all the nodes, we simply bound the
probability that less than a majority of these nodes are good. Setting
c = CL, we use the Chernoff bound on the binomial random variable
B(c, 1 − f).

Pr[B(c, 1 − f)] < c(1 − f)(1 + ǫ) < e
−c(1−f)ǫ2

2

Setting cf(1+ǫ)
2

= c
2
, we get ǫ = 1 −

1
2(1−f)

. ǫ > 0 → f < 1
2
.

Requiring c(1−f)ǫ2

2
≥ 2 ln n gives usc ≥

16(1−f)

(1−2f)2
ln n.

